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I: EXECUTIVE SUMMARY

A. PURPOSE AND SCOPE

This report documents efforts to understand approaches to evidential

reasoning that may be useful in application of expert-system techniques to

image analysis (IA). These techniques offer significant improvements in

image analysis, particularly in the coordinated application of specialized

algorithms.

A central element in such expert-system (ES) applications is the han-

dling of evidence. In most tasks, evidence accumulates over time to dynam-

ically affect uncertainties, so that the decision preferred earlier may

differ from the one preferred later. However, delaying a decision is often

not feasible, since this may foreclose opportunities or increase costs.

Thus, it is important to understand how accumulating evidence will affect

the decision process in the face of uncertainty.

There is no general consensus on how best to attack evidential-reason-

ing (ER) problems, particularly in expert-system applications. Several

approaches have evolved, but they have their roots in diverse fields, such

as statistics and philosophy, and have neither a common terminology nor a

common set of assumptions.

The effort documented here has four principal goals: (1) to clarify

the basic issues in evidential reasoning, (2) to provide a common framework

for analysis, (3) to structure the ER process for major expert-system tasks

in image analysis, and (4) to identify directions for further research.

Its scope has been bounded in the following ways:

0 Effort has been spread evenly across the spectrum of ER
approaches; each has been treated to approximately the
same level of detail in order to provide a uniform view of
relative applicability.

I-'
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" only low-level vision through the level of the primal sketch (M3)
is considered, although extensions to high-level vision are cer-
tainly possible.

* Only rule-oriented techniques for expert-systems are considered;
extensions to data-oriented, object-oriented, and procedure-
oriented techniques are possible.

The approach used to attain these goals within the bounds cited is summar-

0ized below.

a. APPROACH

This research was carried out in three major segments. The first is

primarily concerned with theories of evidential-reasoning, the second with

applications in image-analysis expert systems, and the third with current

results and further research.

The first segment of the research takes place in two steps. In the
first step, it structures the evidential-reasoning problem in a formal par-

adigm robust enough to be of practical use in design and construction of

g expert systems. The elements of the paradigm are:

* Background Elements
* Observation Reports
* Updating Mechanism
* Decision Mechanism.

In the second step, this segment formulates six important theoretical

approaches in a parallel fashion in order to identify key assumptions,

similarities, and differences. The six approaches are:

* Classical Bayes
- Convex Bayes
* Dempster-Shafer

* Kyburg
* Neyman-Pearson
* Possibility.

This segment results in parallel formulations of the ER approaches and a

discussion of points of correspondence and incommensurability.

1-2



The second segment of the research applies the ER approaches to three

important tasks for expert systems in the domain of image analysis. The

LI tasks discussed are:

* Diagnosis - the inference of system behavior from various reports

* Integration - the meaningful combination of a number of disparate
inputs into a smaller number of outputs

n Control - the choice of actions that influence system behavior.

Sample tasks are constructed for each type, and the application of each ER

* "approach to each sample task is discussed. This segment concludes with an

assessment of the strengths and weaknesses of each approach.

The third segment of the research addresses directions for further

effort. It first summarizes the results of the current effort and then

identifies important questions that bear on successful application of

- expert-system technology to image analysis.

C. RESULTS

if The evidential-reasoning research reported in Chapter II can be sum-

marized as follows:

0 The evidential-reasoning problem can be formulated in terms of a
four-part paradigm:

-- Background Elements - This portion of the paradigm contains
a definition of the domain of discourse, that is, of the
world-model to which we shall apply the ER process. It also
contains current knowledge of that world-model to which we
shall apply the ER process. It also contains current knowl-
edge of that world including, possibly, knowledge of the
cost of various actions in that world. Knowledge is
described in terms of belief states.

Observation Reports - This portion of the paradigm describes
the structure and content of reports about the external
world that are the raw material for revision of the
knowledge embedded in the background.

Updating Mechanism - This portion of the paradigm describes
the assumptions, rules, and algorithms used to revised
knowledge upon receipt of observation reports.

1-3



Decision Mechanism - This portion of the paradigm describes
the assumptions, rule-, and algorithms used to choose among
various courses of action given revised knowledge of the

£ world.

* Each of the six major approaches can be expressed in terms of the
four-part paradigm.

" Major similarities in the ER approaches are found in two back-
ground elements:

Structure of the algebra of statements (but not necessarily
the content)

-- The loss function.

" Major differences in the ER approaches are found in several com-
ponents:

Structures given to belief states (points, intervals, convex
sets, fuzzy sets)

Updating algorithms (Bayes' Theorem, Dempster's Rule, princ-
iples of direct inference, confidence intervals, fuzzy com-
bination)

Decision algorithms (expected loss on point-valued p-
functions, expected loss on intervals or convex sets, fuzzy
decision rules).

The research into application of evidential-reasoning approaches to

expert-system tasks in image analysis reported in Chapter III can be sum-

marized as follows:

0 Major expert-system tasks in this domain are: (1) diagnosis, the
inference of system behavior from data on system processes, (2)
integration, the meaningful combination of a number of disparate
inputs into a smaller number of outputs, and (3) control, the
choice of actions that influence system behavior.

* Each of the ER approaches can be applied to sample tasks from
these three categories. Several strengths and weaknesses can be
identified:

Interval and convex-set representations of belief states may
be useful in complex ES tasks (e.g., control), but do so at
the expense of added complexity.

Specialized decision procedures must be developed in order
to make practical use of these robust representations.

Criteria of tvidential relevance are being developed, but
* require practical application for assessment.
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Imprecise linguistic terms may be characterized by fuzzy
sets, but this also requires practical application for
assessment.

Directions for further research include efforts to: (1) develop a

prototype image-analysis expert system for application to current concerns

of the Enqineer Topographic Laboratories (ETL), (2) compare several ER

techniques in direct application to one or more detailed image-analysis

tasks, (3) develop rules for specific image-analysis tasks, (4) investigate

the relative utility of various types of rule-based control systems, and ..-

(5) investigate the utility of trainable or learning expert-systems for -

image analysis.

Im~ I
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II: PARALLEL FORMULATION OF RELEVANT
EVIDENTIAL-REASONING THEORIES

A. INTRODUCTION

This portion of our research serves two purposes. First, it

structures the evidential-reasoning problem in a paradigm robust enough to

be of practical use in design and construction of expert systems. Second,

it formulates six important theoretical approaches in a parallel fashion in

order to identify key assumptions, similarities, and differences.

Effort applied to this part of our research has been spread evenly

across the spectrum of ER approaches. Each approach has been treated to

approximately the same level of detail in order to provide a uniform view

of relative applicability.

Section B structures the ER problem. Sections C and D formulate and

compare the six theoretical approaches. Section E summarizes results of

this chapter.

B. THE EVIDENTIAL-REASONING PROBLEM"

1. General Description

The problem of evidential reasoning is a very general one, and may be

formulated as follows:

* Given reports about the world, and a set of current beliefs about
the world, how shall I revise my beliefs as new reports are
received?

Reports may range from the simple to the complex in referring to various

objects or sets of objects in the world. They also may refer to events and

may contain various uncertainties. Reports may even refer elliptically to

4t_
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ill-defined sets. Beliefs also range from the simple to the complex, and

have a notoriously obscure structure.

Of course, since we seek to construct expert systems to aid in certain

relatively well-defined image-analysis tasks, all of the complications
implicit in the question above need not be explored here. However, a

central element in such expert-system applications as diagnosis,

integration, and control is the handling of evidence. In such tasks,

evidence accumulates over time to dynamically affect uncertainties, so that

the decision preferred earlier may differ from the one preferred later.

There is no general consensus on how best to attack evidential-

'* reasoning problems, particularly in expert-system applications. Several

different theoretical approaches have evolved, but they have their roots in

* diverse fields, such as statistics and philosophy, and have neither a

common terminology nor a common set of assumptions. This makes it

difficult to answer such questions as:

- What are the rules for structuring the reports about the world
that feed raw material into the evidential-updating schemes
advocated by each theoretical approach?

* What are the constraints on ER that are implicit (and explicit)
in application of each of the approaches? More broadly, what
models of ER are implicitly and explicitly advocated by each
approach?

Such concerns lead us to seek a structured paradigm broad enough to

encompass the models associated with each approach. This paradigm will be

used to identify and compare assumptions, rules, and constraints. C !

f..

2. A Structured Paradigm

The structured paradigm for the ER process that we shall use

throughout the remainder of this report has four components:

* Background Elements - This portion of the paradigm contains a
definition of the domain of discourse, that is, bf the world-
model to which we shall apply the ER process. It also contains
current knowledge of that world including, possibly, knowledge of
the cost of various actions in that world. Knowledge is
described in terms of belief states.
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'" . Observation Reports - This portion of the paradigm describes the

structure and content of reports about the external world that
are the raw material for revision of the knowledige embedded in
the background.

0 Updating Mechanism - This portion of the paradigm describes the
assumptions, rules, and algorithms used to revise knowledge upon
receipt of observation reports.

* Decision Mechanism - This portion of the paradigm describes the
assumptions, rules, and algorithms used to choose among various
courses of action given revised knowledge of the world.

Figure II-1 shows the inter-relationships of components of the paradigm.

Some of the research literature excludes decision-making from the ER

process. It is included here for two reasons: (1) the image-analysis

tasks envisioned for expert systems will generally involve decisions of one

sort or another, and (2) the structure of the other components is

intimately linked, in most cases, with the decision process.

The following section discusses each ER approach within the common

framework provided by the structured paradigm. Section D compares them.

C. THEORETICAL APPROACHES

We will discuss six major approaches to evidential reasoning.-

0 Classical Bayes - based upon point or interval represenations of
belief states and Bayes' Theorem

• Convex Bayes - based upon convex sets and Bayes' Theorem

Dempster-Shafer - based upon mass functions and Dempster's Rule
of Combination I.

* Kyburg - based upon interval representations and direct inference

* Neyman-Pearson - based upon confidence intervals

* Possibility - based upon fuzzy sets and degree-of-membership
functions.

Each will be presented separately in terms of the structured ER paradigm

described in Section B. A comparative analysis will be carried out in

Section D.

11-3
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1. Approach 1: Classical Bayes

a. Background Elements

The background in this approach consists of three elements: (1) an

algebra of statements, (2) a probability function defined over this
Salgebra, and (3) a utility function defined over the same algebra. The

algebra defines the domain of discourse, the probability function assigns

degrees of belief to elements of the domain, and the utility function

provides a means of reaching decisions in the domain when coupled with the

decision mechanism.

The algebra used in the classical Bayes approach is known as a

Lindenbaum-Tarski (LT) algebra. It consists of base elements, operators,

and propositions entailed by application of the operators to the base

elements.

The base elements are variously known as atoms, states of affairs, or

possible worlds. They are assumed to be mutually exclusive, so that

application of the disjunctive operator alone expands the base elements

into the set of all possible legal statements about the domain of

discourse. In our discussion, we shall refer to the mutually exclusive

elements as base elements and to the legal statements as atoms.

For example, if there are four mutually exclusive base elements

labelled "1" "2" "3", and "4", then the set of legal statements has the

following members:

(null)

(1) (2) (3) (4)
(1 v 2) (1 v 3) (1 v 4) (2 v 3) (2 v 4) (3 v 4)

(I v 2 v 3) (1 v 2 v 4) (0 v 3 v 4) (2 v 3 v 4)

(1 v 2 v 3 v 4)

In general, there will be Nn legal statements when there are n base

elements, where

11-5
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n n
N = 1 ( ) .%'.'

n p=0 P

n n.

p=O (n-p)! p!

2
n

Thus there will be 16 statements if there are 4 base elements, 256

statements given 8 base elements, and so on.

The second major element of the background is a probability function

defined over the algebra of statements and obeying the following axioms:

0 < p(x) < 1

p(x v y) = p(x) + p(y), if x and y are mutually exclusive.

The sum of the probabilities assigned to the base elements is required to

be 1.

The probability function assigns numbers to the legal statements based

upon these axioms. For example, if the probabilities assigned to the four

base elements are each 0.25, then the legal statements have the following

p-values:

(null) i -
0.0

(1) (2) (3) (4)

.25 .25 .25 .25

(1 v 2) (1 v 3) (1 v 4) (2 v 3) (2 v 4) (3 v 4)

.50 .50 .50 .50 .50 .50

(0 v 2 V 3) (1 v 2 V 4) (1 v 3 v 4) (2 v 3 v 4)

t.75 .75 .75 .75

(1 v 2 v 3 v 4)

1.0

11-6 ' %
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The updating mechanism discussed below controls the manner in which these

p-values change as evidence is received.

The third major element of the background is a utility function

defined over the algebra of statements. This function is ordinarily

construed as a loss function; it gives the loss, lij, incurred when the ith

action is taken in the face of the state of nature corresponding to the jth

base element in the algebra (B5, C2, Ji).

For example, if there are three possible actions and four base

elements, lij could be represented by the following matrix of i rows and j

columns:

143211;S4 3 2 1 :::

1i = 2 0 1 9
136921

The decision mechanism discussed below controls the manner in which the

loss function is used to indicate which action should be taken.

b. Observation Reports

The observation reports are direct assignments of new p-values to

elements of the algebra of statements. That is, they assign a number or

numbers to certain propositions that may be construed as a new degree of

belief in the truth-value of that proposition. The assignment of this new

p-value causes a re-assignment of p-values to other statements in the

algebra via the updating mechanism discussed in the following section.

There are several ways in which this direct assignment of new p-values

may be viewed:

" Each observation report consists of the assignment of a single p-
value of 1.0 to some element in the algebra of statements.

. Each observation report consists of the assignment of a single p-
value in the interval [0,11 to some element in the algebra.

* Each observation report consists of the assignment of two p-
values in the interval [0,1] to some element in the algebra.
These are construed as lower and upper p-values for the element.

11-7
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The primary effect of these different views is upon the size of the algebra

of statements. The number of statements required is largest under the

first view, since we must have a single statement corresponding to each and

every possible observation (parameter value at a certain pixel, value read

on a meter, etc.). The other views allow us to use smaller numbers of

statements, since we may map several observations onto a single

statement. Ordinarily, only the first view is utilized in the classical
Bayes approach.

C-. We shall consider a simple example in order to demonstrate the effect

upon the size of the algebra of statements. Consider a situation in which

the task is to differentiate between a river and a road based upon

measurements of the brightness of candidate topographic features. Suppose

further that the brightness measurement is simply one of three

possibilities: low, moderate, or high.

The propositions used to form the algebra of statements would be:

S1 - "The feature is a road."

S2 - "The feature is a river."

S3 - "The brightness of the feature is low."

S4 - "The brightness of the feature is moderate."

S5 - "The brightness of the feature is high."

under each of the views of observation reports, one simply assigns p-

value(s) to one of these statements and then uses the updating mechanism to

modify the other p-values.

Under the first view, the algebra must include statements that

correspond to every possible observation, since the nature of an

observation is to assign some particular statement a p-value of 1.0. In

terms of the present example, the addition of propositions like the

following would be required if we are actually receiving observations

consisting of cloud-obscured reflectances:

S6 -"The cloud-obscured reflectance measurement is 1.0."

S7 - "The cloud-obscured reflectance measurement is 2.0."

11-8
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S8 - "The cloud-obscured reflectance measurement is 3.0."

S9 - "The cloud-obscured reflectance measurement is 4.0."

S SIo- "The cloud-obscured reflectance measurement is 5.0."

This view, in essence, leads one to embed uncertainties in the matrix of

conditional probabilities. That is, the web of inference leads to p-values

less than 1 .0 for some statements based upon unitary p-values for other

statements. We shall call this sort of uncertainty "inferential

uncertainty."

under the second view, one could use the shorter set of statements (Si

through S5), assign a p-value between 0.0 and 1.0 to one of them, and use

S-the updating mechanism to modify the others. This means that the web of

inference is prepared to operate not only with inferential uncertainty, but

also with a second sort of uncertainty, one that we shall call "evidential

uncertainty." understanding the conditions for which this is advantageous

4s an area of ongoing research (Ti).

The third view of observation reports, like the second, allows the use

of both inferential and evidential uncertainty. It adds the feature of

lower and upper p-values; these, in a sense, spread the evidential

uncertainty. As before, situations in which this is advantageous are being

explored in other research.

C. Updating Mechanism

The classical Bayesian approach rests upon Bayes' Rule for calculating

posterior probabilities of states of nature from two items: (1) prior

probabilities on those states, and (2) conditional probabilities for

evidence given certain states of nature. In symbolic form,

P(Sj) P(sj i/S)"

P~si/.} ),, (P.(E)
-. P(S) P(E/Sk)

k

11-9
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where

P(Si/E.) = posterior probability of state S given evidence E.

P(S.) = prior probability of state S. (i.e., before evidence is

taken into account)

P(E./S i) = conditional probability of evidence F. given state

Si.

Given a probability or degree-of-belief distribution on the evidence,

L P(Sk), we then compute the current p-value for each state of nature from

the posterior probabilities and the evidential p-values, P(Ek), according

to

Pcur(Si) = P(Ek) P(Si/E) (1.2),k k-E

where we assume that the distribution on the evidence is normalized to

one. Variations on this approach are possible depending upon the structure

of the algebra of statements. Note that the formula used here is

compatible with both the first and second approaches to observation

reports. Figure 11-2 provides an overview of classical Bayesian updating.

lPcur (a j),
{P (/ljjj OR {Pcur (gill} oo j t- (flJ/° ail)L U A EPor(3)IPc ' (J) "

LZ (oil J CALCULATE P (fl j ai) CALCULATE cur P Pcur (0j) I

FIGURE 11-2.
OVERVIEW OF CLASSICAL BAYESIAN UPDATING

h..
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In terms of the algebra of statements discussed in this section, there

are no formal differences between any of the statements in the algebra.

S That is, using statements si through S5 of our current example, observation

reports can be received for any one of the statements, even though the

meaning we have attached to S3 through S5 would lead us to classify these

three statements as evidence and the other two as states of nature.

Furthermore, we must remember that the algebra does not consist only

of propositions Si through S5. It is actually made up of the following

mutually exclusive base elements:

BEt = (S1 & S3) BE4 - (S2 & S3)

BE2 = (Si & S4) BE5 = (S2 & S4)

BE3 = (S1 & S5) BE6 = (S2 & S5)

Since there are 6 base elements, there are 26 or 64 statements in the

algebra.

Let us continue to flesh out the example. We need a set of

conditional p-values:

1.0 0.0 0.9 0.5 0.3

0.0 1.0 0.1 0.5 0.9

PCON.. = 0.9 0.1 1.0 0.0 0.0

0.5 0.5 0.0 1.0 0.0

0.3 0.9 0.0 0.0 1.0

where each element in this matrix of i rows and j columns gives the
th

conditional p-value of the i statement in the algebra given that the p-th

value of the j statement is 1.0. The values in this matrix are assumed

to be constant throughout the updating process described here.

1.i
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we also need a matrix of the current p-values:

P cur ( i)

I P~(S)Pcur ( 2}

PCUR f Pcur($3 )

Pcur (S4)

cur $(S5)

where each element in this matrix of i rows gives the current p-value of

. the ith statement in the algebra. The values in this matrix are revised

each time that a new observation report arrives. Each one is initially

equal to the a priori value, P(S).

Some writers divide the statements in the algebra into two distinct

classes: hypotheses and evidence (D4, D5). Hypotheses are often called

states of nature, while evidence is often termed measurements. In any

case, the basic idea is that there is a directionality in the web of

inference: we reason from evidence to hypotheses. We shall term this the

hierarchical approach.

This approach reduces the dimensionality of updating calculations. In

the context of our example, observation reports now can only be received on

statements S3, S4, and S5. The conditional p-values for the evidence given

* the hypotheses are:

0.9 0.1

P(E~/j = .5 0.5
' c~i/Hj 0 ~ os

0.3 0.9

where each element in this matrix of i rows and j columns gives the
thconditional p-value of the i evidential statement in the algebra given

• th
that the p-value of the j hypothesis is 1.0. The values in this matrix

- are assumed to be constant throughout the updating process.

The matrix of the current p-values for hypotheses becomes:

11-12
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PcuR( H.) = Pcur(Hi) I
PCUP(H.)

" where each element in this matrix of i rows gives the current p-value of

the ith hypothesis in the algebra. The values in this matrix are revised

" each time that a new observation report arrives.

-The hierarchical approach may be extended so that evidential

statements can serve in one of two different roles in the web of

inference. First, they may serve as evidence for the hypothesis set as

discussed above. Second, they may serve as evidence for other evidential

statements, rather than for the hypothesis set.

There may be an advantage in taking some form of hierarchical

approach. First, the inferential relationships between statements in the

algebra are made more explicit than they are in the undifferentiated

algebra. Second, the computational burden associated with each updating

cycle may be lessened in that the effects of an observation report are

limited to portions of the hierarchy explicitly connected with the

statement set that is the subject of the report.

For either the non-hierarchical or hierarchical approach, if we use

the first interpretation of observation reports, the updating mechanism

operates just once. We have an a priori set of PCUR(Hi), we receive an

p observation report that assigns a p-value of 1 .0 to one of the evidential

statements, and we calculate an new set of PCUR(Hi ) using equations (1.1)

and (1.2).

under the second interpretation of observation reports, p-values may

have values less than 1 .0 and may therefore change over time. This would

enable the updating cycle to occur more than once. For example, the p-

value for evidential statement S3 might first be received as 0.5, then

later as 0.7, and still later as 0.9.

The structure of legal evidential statements as embedded in the

* algebra of statements is an important issue. Certainly some evidential

statements come in sets in the sense that they correspond to one

observation that can have multiple outcomes, such as the reading on a

II-1 3
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"" digital meter. In that case, the observation report is a set of p-values,

*one for each evidential statement in the set. For example, the report on

S3, S4, and S5 might be:

OR1 = 10.5, 0.3, 0.2}

This would lead to an updating cycle. Additional cycles might be induced

upon receipt of reports like the following:

oR2 = 10.7, 0.2, 0.11

oR3 = 10.9, 0.1, 0.01

The updating cycles would continue as long as new reports were received.

9Other important issues are the effect of different sequences of reports

upon the evolution of p-values and optimal control of these sequences.

Tese lie beyond the scope of the present effort, but will be addressed in

subsequent work.

d. Decision Mechanism

Given that the updating mechanism provides us with p-values for the

states of nature, and given that the background contains the loss function,

we can formulate the expected loss of the it h action as follows:

EL1 -i (1.. * PCu .3),

* where the summation is over the j states of nature.

The general Bayesian decision function is simply to chose, whenever a

decision is required, the action that gives the minimum value of ELi. This

is, of course, based upon the current set of PCURj and the nature of the

loss function.

111
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The precise manner in which the loss function has been constructed may

affect the decision, but discussion of this construction is beyond the

scope of this effort. We simply mention here that the loss function matrix

can be made up of absolute losses or relative losses. An absolute loss is
th th

the cost of taking the i action in the face of the j state of nature,

while a relative loss for the same action-state pair is the difference

between the absolute loss of that pair and the minimum of the absolutebewe th boue ospi

losses incurred by all actions in the face of the jth state of nature.

Relative losses are often termed "regrets."

Similar remarks can be made concerning the construction of the table -

of actions. The actions can range from very simple to very complex. A

simple table of actions might be:

Al - Take the pixel under consideration to be part of an edge
& feature, if the state of nature is A.

A2 - Take the pixel under consideration not to be part of an
edge feature, if the state of nature is B.

A more complex table of actions might be dependent upon the number and

structure of observation reports. For example, we might find actions like

the following in such a table:

A3 - Take the pixel under consideration to be part of an edge
feature, if observation report 01 has been received.

A4 - Take the pixel under consideration not to be part of an
edge feature, if reports 0 or 03 have been received.

2 3

Elaboration of the various complex tables of actions is highly dependent

upon the specific task being addressed, as will be seen in Chapter III.

Decision theory offers an alternative to the approach based upon

current p-values for states of nature. In the decision-theoretic approach,

one constructs decision strategies based upon an assumption of ignorance

concerning the state of nature. Discussion of the construction and

comparison of such decision strategies (e.g., minimax loss and minimax

regret) is also beyond the scope of the current effort.

II-1 5 " 12
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We conclude this section with a brief summary of the classical

Bayesian approach (Table II-1). This table may be compared with similar

tables for the other approaches. -

.' TABLE II-1
SUMMARY OF CLASSICAL BAYESIAN APPROACH

. Background Elements

-- Algebra of statements

Probability function defined over algebra of statements

L-- Loss function defined over algebra of statements and
embodying actions relevant to that algebra.

* Observation Reports

-- Association of p-value with statements in the algebra.

0 Updating Mechanism

-- Via Bayes' Theorem, calculate posterior probabilities based
on prior and conditional probabilities. In symbolic form,

P(S i ) P(/Si
)

,I P(Sk) P(Ej/Sk)

k

-- Use the posterior probabilities and the p-values for

evidence to calculate current p-values on states via

S(cur(S = P(Ek) P(Si/Ek)"

k

* Decision Mechanism

-- Choose the action that minimizes the loss function using the
current probability function.

11-16 11-16.
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2. Approach 2: Convex Bayes

5 a. Background Elements

The background in this approach, like the classical Bayes approach,

V consists of three elements: (1) an algebra of statements, (2) a

probability function defined over this algebra, and (3) a utility or loss

function defined over the same algebra. As before, the algebra defines the

domain of discourse, the probability function assigns degrees of belief to

elements of the domain, and the utility function provides a means of

* reaching decisions in the domain.

The convex Bayes approach also uses an LT algebra. It consists of

base elements, operators, and propositions entailed by application of the

operators to the base elements. As before, the base elements are assumed

to be mutually exclusive, so the application of the disjunctive operator

expands them into the set of all possible legal statements about the domain

of discourse.

The probability function in the convex Bayes approach differs in a .

significant way from the function in the classical approach. Here the

function is a convex set of p-functions (L2). That is, the belief state is

not characterized by a single function but by a set of functions having the

property of convexity: the set contains every linear combination of any two

* members of the set.

In general, if there are n base elements, the belief state will

correspond to a domain in a space of (n-i) dimensions, since the nth

component of the belief state can be determined if (n-1) components are

known. For example, suppose that there are three base elements. The

belief state is then a domain in the the two-dimensional space depicted in

Figure 11-3. The region indicated depicts a possible belief state, IBiJ.
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FIGURE 11-3.
REPRESENTATION OF BELIEF STATE FOR THREE BASE ELEMENTS

IN THE CONVEX BAYES APPROACH

509-2-14-85-8

- It is a five-sided polyon with vertices vi through vi5, so that it can be

represented compactly by its vertices as follows:

vil 0.4 0.2 0.4

Vi 2  0.4 0.3 0.3

V(Bi ) vi 3  0.5 0.4 0.1

vi4 0.6 0.2 0.2

vi5  0.7 0.2 0.1

• It must be remembered that this matrix represents only the vertices of Bi;

any point on the boundaries or within them is also a member of .S i j• In

addition, the belief state may have any number of vertices, but must have

*" at least one.

111
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b. Observation Reports

The convex Bayes approach, like the classical approach, construes the

observation reports as direct assignments of new p-values to elements of

the algebra of statements. That is, the reports assign a number to certain

propositions that may be construed as a new degree of belief in the truth-

value of that proposition. The assignment of this new p-value causes a re-

assignment of p-values to all other statements in the algebra via the

updating mechanism discussed in the following section.

There are now four ways, rather than the three discussed with

reference to the classical approach, in which this direct assignment of new

*p-values may be viewed:

* Each observation report consists of the assignment of a single p-
value of 1.0 to some element in the algebra of statements.

: Each observation report consists of the assignment of a single p-
value in the interval [0,1] to some element in the algebra.

* Each observation report consists of the assignment of two p-
values in the interval [0,1] to some element in the algebra.
These are construed as lower and upper p-values for the element.

* Some observation reports consist of the assignment of two or more
linked bounds on the convex set of p-values. These bounds are

v linked in the sense that they jointly specify limits on the set.

As before, the primary effect of these different views is upon the size of

U the algebra of statements. The updating mechanism remains similar, as we

shall see below. However, the decision mechanism based upon either single

or multiple lower and upper p-values remains problematic.

c. Updating Mechanism

In essence the updating mechanism in the convex Bayes approach

operates like the updating mechanism of the classical Bayes approach. The

key difference is that the entire convex set of functions comprising the

belief state is used, rather than a single function.

h: -1
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As before, we use Bayes' Theorem to calculate posterior probabilities

based on prior and conditional probabilities. In symbolic form,

Pr (Si) Pr(E. /s.)
P (S./E.) (2.1),
r 1(sk)P( k

1k r. (SkPr(E.I
k

where Pr is the rth member of the convex set of probability functions.
r

This formula is used as follows:

* Assume evidence E. has been presented.
For each value of r, find the set of P (S./F.), usirg the set of

p (S), the set of P (E ' /S - ) and the formula above. The valuesk
o k may be written as 1,,...,i,...,kmax). These sets each
have k members. maxmax

0 The output is the convex set of posterior current probability
functions, that is, the convex set of the sets of P (S./E.).

* When new evidence En is presented, repeat this procedure using En
in place of E., and the set of P r(Si/Y in place of the set of
Pr (Sk) (L2, p . 83-84). ripa ot st

Each new evidential input thus induces a mapping from one convex set of p-

functions to another convex set.

It is clear that the computational burden of the updating mechanism is

increased by use of the convex set of p-functions in place of a single p-

function. Little work has been done in actual computation of updated

convex belief states, so the extent of this burden is unclear at this time.

d. Decision Mechanism

upper and lower probabilities for some statement in the algebra can be

taken from the convex set of Pr(Si/E ) using the technique of supporting

lines, planes, or hyper-planes (L2, pp.196-198). However, no general

procedure exists to handle upper and lower bounds in a utility function.

11-20

. ."

n t. ,.. .'. " " . . ".." ' -. ' -. ' .. " %', .' - - ..- , . ." . . .'- .' . . . * . " -



one method of attack is to suppose that the decision indicated is the

one that minimizes the expected loss as was done in the classical

approach. In this case we seek to minimize

ELi = (lj *PCUR ) (2.2),

where the summation is over the j states of nature. Using the convex set

of P (S./E.), we derive upper and lower bounds on each PCURj so that, for
r i

each action, there are now upper and lower bounds on the expected loss. If

PCUR. is bounded by PCURU. and PCURL., then we might say that -9.. I.ies

between ELMIN i and ELMAXi , where

tEU4INi  (lij * PCURLj) (2.3),
)'

ELMAXi (lij * PCURU.) (2.4).

Such intervals for different actions will, in general, overlap. No

generally accepted method for choice of actions has yet been developed,

although minimax techniques have been explored by Kyburg and Levi.

We conclude this section with a brief summary of the convex Bayesian

approach (Table 11-2). This table may be compared with similar tables for .-

the other approaches.
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TABLE II-2
SUMMARY OF CONVEX BAYESIAN APPROACH

I
* Background Elements

-- Algebra of statements

-- Convex set of probability functions defined over algebra of
statements

-- Utility function (not yet defined).

* Observation Reports

-- Statements in the algebra.

* Updating Mechanism

-- Via Bayes' Theorem, calculate posterior probabilities based
on prior and conditional probabilities. In symbolic form,

Pr(Si) Pr(E/Si)

P (S /E.) ---------------r iI

i Pr(Sk) P (EI/Sk)

k

thwhere Pr is the r member of the convex set of probability
0 functions.

* Decision Mechanism

Upper and lower probabilities for some statement in the
algebra can be taken from the convex set of P (S./E.), but
no general procedure exists to handle these in a uthdity
function. Presumably the decision indicated is the one that "
maximizes this utility using the convex set of P (S./E.).

r

°..

p..
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3. Approach 3: Dempster-Shafer

a. Background Elements

The background in this approach, like the first two approaches,

consists of three elements: (i) an algebra of statements, (2) a mass

* function defined over this algebra, and (3) a utility function defined over

the same algebra. The algebra defines the domain of discourse, the mass

function assigns degrees of belief to elements of the domain, and the

utility function provides a means of reaching decisions in the domain. It

should be noted that the utility function has received little attention in

this approach, but will be required in practical applications.

The Dempster-shafer approach also uses an LT algebra consisting of

base elements, operators, and propositions entailed by application of the

operators to the base elements. The base elements are again assumed to be

mutually exclusive. We shall continue to refer to the mutually exclusive

elements as base elements and to the legal statements as atoms.

The mass function serves as the basic vehicle for assignment and

S manipulation of degrees of belief. Mass is distributed across the set of

subsets of the elements of the domain of discourse, that is, over the set S

of (2 exp 2
n ) propositions constructed from the 2n atoms that were in turn

constructed from the n base elements.

The mass function m for subset A of S has the following properties

(S4):

m (A) is a real number on [0,11

m (null set) = 0

• ~ m (A i) = I1:.

i
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The value of MI(f i ) is taken to be the weight of belief that is ascribed
just to fi. The f. for which M1 (fi) is nonzero are called focal elements

of m Since S is itself a member of S, m(S) describes the weight of

belief unassigned to any smaller subset of S; this may be termed the

'" uncertainty.

This approach provides two measures of belief state for a given

proposition Q: support (SPT) and plausibility (PLS). They are calculated

as follows (B2, S4):

SPT,(Q) = E M1 (fi) (3.1),

fi cQ

PLSI(Q) 1 - M(f) (3.2),

fic -Q

= 1 - SPT (-Q) (3.3).

The support for Q is thus the sum of the mass attributed to all subsets of

Q, while the plausibility of Q is one minus the support for the negation of

Q. The plausibility can also be expressed as the sum of the mass

attributed to all subsets of S that contain some element of Q. It follows

that the plausibility of Q is always greater than or equal to the support

for Q.

The belief state concerning Q can be written as an interval using

SPT(Q) as the lower endpoint and PLS(Q) as the upper. Some authors

describe this as an interval-valued probability on Q (D2). Kyburg has

shown (K4) that closed convex sets of classical probability functions can

represent belief states in a fashion that includes the mass-function

representation as a special case.

The background also contains means of translating observation reports

into mass functions. one method is that of a mass-function distribution;

this distribution provides a normalized measure of the mass to be assigned

to each element of the domain in the event of each possible observation.

11-24
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Figure 11-4 shows a set of such distributions in schematic form. These are

clearly analogous to the class-conditional functions of standard probabiivy

theory.

b. Observation Reports

Observation reports, at least to the extent that they are expected to

mesh with mass-function distribution, consist of statements like the

following:

Si - "The brightness of object X is between 1.2 and 1.6."

S2 - "Object X is surrounded by between 2 and 6 objects of
similar brightness."

Proponents of this approach assert that it is not limited to the handling

of data based upon observational statistics, so reports might also consist

of statements that embody knowledge that is not necessarily based upon

statistical data. An example of such a report is:

S3 - "In region Y, the expectation of encountering an object of
class C is much higher than that of any other class."

In any case the intent of the approach is that observation reports

determine mass functions via mass-function distributions.

It is to be noted that each type of observation report is taken to

generate a separate mass function. This presents no problem as long as it

is clear that the evidential impact of a given report is properly assigned

to some subset of the domain of discourse. However, how this proper I .

assignment is to be guaranteed is not a trivial matter. For example,

suppose we were to receive the following report:

S4 - "The R-brightness of object X is between 102 and 108."

If our domain of discourse were constructed to deal only with reports on

brightness of an object, the brightness of its nearest neighbors, and the

expectation of encountering certain classes of objects in certain regions,
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POSSIBLE RESULT OF OBSERVATION REPORT
IX 0 -1.4 a )X(O09A

ATOM 1

ATOM2 3

ATOM3 4

ATO N-
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X 0 -3A X,--A X, - A X 0 A X-+2 A X0 -3 A

OBSERVATIONAL PARAMETER X

FIGURE 11-4.
SCHEMATIC MASS-FUNCTION DISTRIBUTIONS

IN THE DEMPSTER-SHAFER APPROACH
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-: then we would not know what to do with this report on R-brightness.

Clearly, the domain of discourse would require restructuring if we intend

3 to make use of such reports.

This raises the question of what rules we should use in structuring

.- the domain of discourse. We want to ensure the inclusion of subsets that

can serve as recipients of mass from each and every observation report that

will be received in performance of a given task. A general theory of the

development of such rules is an area of much current research and is beyond

the scope of this report. However, several practical insights on this

topic will emerge from our discussion of sample image-analysis tasks in

Chapter III.

c. updating Mechanism

Suppose that we have received two observation reports that have
individually engendered mass functions N and M2 . We combine M and M to

1 2 1 2 t

* form a new mass function, M12 , defined over subsets of the domain of

discourse (S4). In symbolic form,

M (f 1) ( f1 I 2 j)

M (f )-(.) 12k '' M1(f i ) M (f.)

where the first summation,_-'' is over all f. and f. such that (f./'f.) =

fk' while the second summation, s'', is over all f. and f. such that

(f. ' f.) null.

The updating procedure first assumes that a current mass function, M1,

is available. Then it assumes that a new mass function, M2 0 has been

presented. Finally it combines MI and m 2 to form M1 2, and uses it as the

current mass function should other new mass functions be presented. Figure

11-5 gives an overview of this process.
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i '(M12QK))SPT12 IQ)

(Ml(fi)) CALCULATE CALCULATE CALCULATE
i,_ M 12(Qk) - SPT12 ( .) PLS12 (0)

(M2(fi)) SPLS12 (Q)

SPT 12 (Q) < P (Q ) PLS12 (Q)

FIGURE 11-5.
OVERVIEW OF DEMPSTER-SHAFER UPDATING

d. Decision Mechanism

The type of decision mechanism compatible with the Dempster-Shafer

approach is not currently known. Support and plausibility functions for

each statement in the domain of discourse can be calculated based upon the

current mass function. These may be used as upper and lower bounds upon

the probability of each statement, but there is as yet no accepted, general

mechanism for decision-making based upon these bounds.

If we attempt a construction parallel to the classical and convex

Bayesian approaches, the difficulties become apparent. As before, we

th
formulate the expected loss of the i action as follows:

EL i : (l.. PUR ) (3.5),

j

where the sunmation is over the j states of nature. If we construe PCURj

as an interval bounded by SPT(O.) and PLS(O.), then we might say that EL

lies between ELMIN i and ELMAXi, where

11-28
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ELMINi = 2 (lij * SPT(Qi)) (3.6),
j

= EJ4Ai (lij * PLS(Q )) (3.7).
ELMAXi (

For different actions, these intervals will, in general, overlap.

If the decision function is simply to chose, whenever a decision is

required, the action that gives the minimum value of ELi , it is not clear

in this case how to determine the action that conforms to this decision

rule. Some simplification may be obtained by partitioning the set of EL-

intervals into those that might include the minimum and those that will

not, but there remains the problem of choosing the appropriate interval

from the candidate subset. An analogue of mixed strategies may be useful,

but this remains an open question for research.

Table 111-3 provides a brief summary of this approach. It may be

compared with similar tables for the other approaches.

4. Approach 4: Kyburg

a. Background Elements

The background in this approach, like others already discussed,

consists of three elements: (1) an algebra of statements, (2) a

.. probability function defined over this algebra, and (3) a utility or loss

Sfunction defined over the same algebra. As before, the algebra defines the

domain of discourse, the probability function assigns degrees of belief to

elements of the domain, and the utility function provides a means of

reaching decisions in the domain.

The Kyburg approach also uses an LT algebra consisting of base

elements, operators, and propositions entailed by application of the

operators to the base elements. As before, the base elements are assumed

to be mutually exclusive, so application of the disjunctive operator

expands them into the set of all possible legal statements about the domain

of discourse.
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TABLE 11-3

SUMMARY OF DEMPSTER-SHAFER APPROACH

0 Background Elements

*" -- Algebra of statements, AS-i

-- Mass function Mi defined over subsets of AS-i-
. Observation Reports

-- Mass function M2 defined over the subsets of another algebra
of statements, AS-2.

-- This mass function can sometimes be decomposed into mass
supporting statements in AS-i and mass supporting the set of -.-

all subsets of AS-i.

* Updating Mechanism

-- Combine M1 and M2 to form a new mass function, M1 2 , defined
over subsets of AS-i. In symbolic form,

S2 ( k (f. M (f.)
1 2j

12 (fk

1 -s'' MI(fi) M2(f'

where the first summation,v", is over all f. and f. such

that (fi ^ f ) = fk' while the second summation, '', is

over all f. and f. such that (f "' fj) = null.

-- This formula is used as follows:

00 Assume that a current mass function, M1 , is available.

- oo Assume that a new mass function, M2, has been
presented.

oo Combine M and M to form M , and use it as the1 2 12 2
current mass function should other new mass functions

presented.

* Decision Mechanism

-- Support and plausibility functions for each statement in AS-
1 can be calculated based upon the current mass function.
These may be used as upper and lower bounds upon the

. probability of each statement, but there is as yet no
general mechanism for decision-making based upon these
bounds.
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Direct inference refers to the manner in which knowledge of chances

(or frequencies, or objective probabilities) influences belief states about

P the outcomes of trials involving chance setups. In Kyburg's approach, some

portion of the algebra of statements has the status of a body of knowledge

containing statements about relative frequencies of occurrence of various

characteristics in various classes.

Kyburg offers a principle of direct inference that allows the

assignment of precise or imprecise p-values to hypotheses based upon

knowledge of frequencies without requiring the assignment of precise prior

p-values. Adoption of his principle of direct inference may provide

support for the use of Fisherian fiducial inference.

The concept of probability embraced by this approach is

, epistemological. This means that probability is actually a descriptor of

credibility relative to some body of knowledge. In addition, the p-value

used in this approach is an interval on [0,1].

we will use a concrete example as the basis of our discussion of the

Kyburg approach. The body of knowledge is taken to consist of the

following statements:

* The fraction of members of class C1 that have property P lies in
the interval [L U .11.

* The fraction of members of class C2 that have property p lies inp the interval [L2 U2].

* The fraction of members of class C12 that have property p lies in
the interval [L U 1] where class C is the intersection of
classes C and ~ 21

1 2

The hypothesis of interest is that an item selected from class C has
12

property p.

In order to show how to apply Kyburg's direct-inference principle, we

require a means of determining which evidence is relevant to a given

statistical hypothesis and which is not. We shall use two terms, K-

. relevance and K-irrelevance, to this end. e:
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K-irrelevance refers to a mandatory lack of impact of a given piece of

information on our deliberations concerning the credibility of a certain

statistical hypothesis. The information concerning C2 in the body of

knowledge is K-irrelevant if and only if the following conditions are

fulfilled:

* The current body of knowledge implies that (LIU I ] is either a

P subinterval of, or identical to, (LI 2 ,U1 2 ]•

0 The current body of knowledge implies that [LI,U I] is either a
subinterval of, or identical to, [L2 ,U2].

L In our example, if the information concerning C2 is K-irrelevant, then the

information concerning C1 is the total information K-relevant to the

hypothesis.

K-irrelevance is thus a formal criterion that tells us whether or not

knowledge of a specific relative frequency should influence our degree of

belief that a member of C12 has property P. For example, we might know

that:

* The fraction of Swedes who are Protestant lies in [a, b].

* The fraction of visitors in Lourdes who are Swedish lies in
Cc, d].

" 0 The fraction of Swedish visitors to Lourdes who are also
Protestant lies in [e, f].

We might then be interested in finding the appropriate degree of belief to

attach to the hypothesis that a particular person is a Protestant, given

that we know that he is a Swedish visitor to Lourdes. Intuitively, we know

that the values of a, b, c, d, e and f will influence this degree of

belief. K-irrelevance formalizes this process.

Kyburg's principle of direct inference has a simple form, once the

criterion of K-irrelevance has been applied to the body of knowledge. It

states that, if the information concerning C1 is the total information K-

relevant to the hypothesis, then the degree of belief to be assigned to the

hypothesis is just the interval CL , U].

1
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The upshot of this process is that the Kyburg approach recommends, in

many cases, that different intervals of degrees of belief be embraced.

This has the consequence that the evolution of p-values as evidence

accumulates follows a different trajectory through the space of belief

states. That this different trajectory may have important practical impact

seems reasonable, but remains to be demonstrated in a systematic fashion.

b. Observation Reports

Observation reports in this approach can again be construed as

statements in the algebra. When coupled with appropriate knowledge of

relative frequencies, they assign new p-values to elements of the

algebra. Such assignments explicity refer to interval-valued p-functions.

There is just one form of report in this approach:

0 Each observation report consists of the identification of the
class or classes to which the observed object belongs. Knowledge
of relative frequencies then determines how to assign two p-
values in the interval [0,1] to some element in the algebra.
These are construed as lower and upper p-values for the element.

An updating mechanism to handle such reports is available, but, as in other

approaches using interval-valued p-functions, the decision mechanism is an

area of ongoing research.

c. Updating Mechanism

The Kyburq approach mandates the use of a unique updating mechanism:

the principle of direct inference discussed above. In some special cases,

this gives results that can be obtained from Bayes' Theorem. Legal

applications of the theorem are possible when the body of knowledge

contains statements like:

Si - The fraction of members of class Ci that have property P lies
in the interval (LUi].•1 1

These statements must be based on knowledge of relative frequencies of

occurrence of properties in real sets of objects or events. Furthermore,

L. for each hypothesis being considered, the appropriate sorting of the
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elements of the body of knowledge into those that are K-relevant and those

that are not must take place.

Given these conditions, the application of Bayes' Theorem proceeds in

a manner analogous to that of the convex Bayes approach. The principal

difference is that the size of the convex set of p-functions calculated

using intervals alone usually will be smaller than the set of functions

considered in the explicitly convex approach.

d. Decision Mechanism

The Kyburg approach offers interval-valued p-functions. As has been

discussed above for both the convex Bayes and Dempster-Shafer approaches,

there is currently no general decision mechanism available for interval-

valued p-functions.

We close this section with a summary of the Kyburg approach (Table II-

4). This may be compared with similar summaries for the other approaches.

5. 4pproach 5: Neyman-Pearson

a. Background Elements

We focus here on the body of theory developed by J. Neyman and E.

Pearson to deal with the testing of hypotheses. We shall discuss several

important features of this approach: first, the nature of the hypotheses

being assessed; second, the means by which evidential weights are developed

for each hypothesis; and third, the means by which the decisions are made

on the basis of the weights.

The hypotheses treated by this approach are statistical in nature.

That is, they concern the behaviour of observable random variables. Some .--

authors, however, do not explicitly restrict the hypotheses in this

fashion.

(
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TABLE 11-4
SUJ4MARY OF KYBURG APPROACH

* Background Elements

S-- Algebra of statements

-- Body of knowledge defined over subsets of the algebra

-- Criteria of relevance concerning statistical hypotheses.

* Observation Reports

-- Each observation report consists of the identification of
the class or classes to which the observed object belongs.

* Knowledge of relative frequencies then determines how to
, . assign two p-values in the interval [0,1] to some element in

Ethe algebra. These are construed as lower and upper p-
values for the element.

0 updating Mechanism

-. Apply criteria of relevance to elements of the body of
knowledge

-- Apply principle of direct inference as appropriate

S-- Bayes' Theorem may be applied in certain cases involving
knowledge of relative frequencies of occurrence of
properties in real sets of objects or events.

* Decision Mechanism

,-. Interval-valued p-functions are derived for statements in
the algebra. These may be used as upper and lower bounds
upon the probability of each statement, but there is as yet
no general mechanism for decision-making based upon these
bounds.
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We may divide this approach into three segments. In hypothesis

testing, we reason from observations to conclusions about whether the state

of nature falls into one of two categories, and then chose one of two

actions. In estimation, we reason from observations to conclusions about

whether the state of nature falls into one of n categories (n > 2), and

then chose one of n actions that lie in one-to-one correspondence with the

Pstates of nature. In confidence-interval generation, we reason from

observations to conclusions about the set of categories in which the state

of nature falls, and then chose one of several actions. The size of the

set of categories is determined by the confidence level, L, such that,

presumably, the set is larger the closer L is to unity. The size of the

set is also determined by the nature, the number, and possibly the sequence

of the observations in a way that must be specified for each application.I-

The major elements of the background are an algebra of statements and

set of confidence intervals. The algebra of statements defines the domain

of discourse in a manner similar to that of the approaches discussed

above. The confidence intervals provide the linkage between observation

.re reports and the correlate of p-values to be assigned to statements in. the

algebra. These values will, in general, also be intervals.

V •The confidence intervals are to be constructed as follows:

0 For a possible value, x0, of some parameter, X, in the domain of
discourse, construct the set of values of some other parameter,
Z, that constitute a test of significance level (1-L) that X has
the value x Call this set of Z values the acceptance set for

- 0 on Z and denote it by AS(z: x = x0

a Repeat this procedure for all other possible values of x to
obtain the set of all acceptance sets for xi on Z, AS(z: x =
xi) . This set of acceptance sets can be visualized as creating
envelope in the X-Z plane as shown in Figure 11-6.

0 From this envelope find the set of values of X that would not be
rejected by observation of value z0 for Z. This is the
confidence interval of level L for x on z0, denoted by CI(x: z
- z 0 .

The confidence coefficient that the interval so constructed contains the

actual value of x is then taken to be L. We may, with caution, correlate

the confidence coefficient with the p-value discussed in other
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FIGURE 11-6.
CONFIDENCE-INTERVAL CONSTRUCTION

The confidence coefficient that the interval so constructed contains the

actual value of x is then taken to be L. We may, with caution, correlate

. the confidence coefficient with the p-value discussed in other

approaches. The set of all confidence intervals of level L for X on z. may

be termed the confidence set for X on Z, denoted by CI(x: z z0).

Other parameters in the domain must also be addressed. That is, one

must: (1) repeat these steps for all other possible parameters that can

constitute tests for X, and (2) repeat these steps for all other parameters

in the domain of discourse that stand in the relation of testing as do X

and Z.
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Examples of pairs of X-like and Z-like parameters might include:

* Z - The position of the pointer on an analog voltmeter

X - The steady-state value of the voltage in a certain circuit

" Z - The brightness of a certain pixel

X - The strength associated with the assignment of a pixel to a
certain class.

Clearly, the nature and number of such pairs will influence the complexity

of the updating process.

b. Observation Reports

Observation reports are statements in the algebra. They refer to

parameters like Z that have been identified during construction of the

confidence sets.

There are two possible interpretations of the content of observation

reports that could be addressed using this approach:

* Each report consists of the assignment of a single p-value of 1 .0
to some element in the algebra of statements that corresponds to
a single value of the observation parameter

* Each report consists of the assignment of a single p-value of 1.0

to some element in the algebra of statements that corresponds to
a range of values of the observation parameter.

It was apparently the first of these interpretations that was of concern to

the developers of this approach.

The second interpretation may offer a means of dealing with

uncertainty in observation reports. For example, suppose we are dealing

with reports similar to the following:

RI - "The degree to which this feature resembles an edge lies between
8 and 9 (on a scale of 10)."

Assuming that the confidence sets have been constructed appropriately, then

the ends of the reported interval, z, and z2, could be used to locate two

different confidence intervals, CI1(x: z = z1 ) and CI2 (x: z = z2 ). The

confidence interval to be used with the given operation might then be taken
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to be that defined by the minimum and maximum values of x found in the

interval obtained by combining CII and CI2.

It is not clear, however, whether it is possible to carry through the

construction of confidence intervals using the second interpretation.

Clearly, the envelope must be of the simple shape depicted in Figure 11-6

for this interpretation to be applicable. More importantly, the proper

construction of tests of significance level (1-L) under these conditions

remains a question for further research.

c. Updating Mechanism

There are two updating mechanisms available in this approach. First,

updating can occur as a result of a report concerning additional

observations of the same Z-like parameter. Second, updating can occur as a

result of a report concerning observations of other Z-like parameters.

With regard to the first mechanism, the confidence set described in

section (a) can be construed as a family of nested curves that define a

region in the X-Z plane that grows smaller as additional observations are

made. This means that an observed value of Z determines a smaller

confidence interval when more observations, rather than fewer, have been

made.

In this case the updating proceeds as follows:

0 Receive observation report that gives the value of Z

0 Determine the number of observations of this type and use the
curves in the confidence set corresponding to this number

* From these curves, determine the limits on X to confidence level

It is clear that this mechanism can be applied to certain cases of

evidential reasoning, particularly those that involve sampling from

populations that can be regarded as examples of well-defined statistical

distributions. The degree to which the mechanism can be applied to

situations that do not entail such distributions is not clear.

14
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The second updating mechanism operates in a fashion similar to the

first, except that the receipt of reports on two Z-like parameters now

requires that the confidence intervals from these two parameters be

integrated. How this is to be done is, to the author's knowledge, not

. addressed by practitioners of this approach. Perhaps the answer lies in

-" the construction of the algebra of statements so that all relevant

combinations of Z-like parameters are represented by appropriate confidence

sets.

It should be noted, for both mechanisms, that it is not the p-value of

X that changes as new reports are received; this p-value is fixed by the

choice of L. The change induced by new reports is in the limits of the

confidence interval that is believed, with a p-value of L, to contain the

actual value of X.

d. Decision Mechanism

The Neyman-Pearson approach, as here described, provides us with p-

functions of value L on statements concerning intervals within which

parameters may fall. If the algebra and the actions have been constructed

with this in mind, it may be possible to map preferred actions to intervals

in the X domain. In that case, the choice of action is clear if the

confidence interval on X coincides with one of the action intervals.

However, the intervals will not coincide in general, and the appropriate

choice of action is problematic. Weighting of the loss factors by measures

of interval overlap (in addition to the confidence level) may be feasible,

but will not be pursued here.

We conclude this section with Table 11-5. This presents a brief

summary of the Neyman-Pearson approach.
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TABLE 11-5
SUMMARY OF NEYMAN-PEARSON APPROACH

5 * Background Elements

-- Algebra of statements

-- Confidence intervals of level L defined over subsets of the
algebra.

*- Observation Reports

-- Each report consists of the assignment of a single p-value
of 1.0 to some element in the algebra of statements that
corresponds to a single value of the observation parameter.

In some cases, the element of the algebra may correspond to
a range of values of the observation parameter, rather than
a single value.

* Updating Mechanism

-- For additional observations of the same Z-like parameter:

,0 Receive observation report that gives the value of Z.

0* Determine the number of observations of this type and
use the curves in the confidence set corresponding to
this number.

00 From these curves, determine the limits on X to
confidence level L.

For observations of different Z-like parameters, the
procedure is presumably similar if the algebra of statements
has been constructed so that all relevant combinations of Z-

like parameters are represented by appropriate confidence
sets.

-- The change induced by new reports is in the limits of the
confidence interval that is believed, with a p-value of L,
to contain the actual value of X.

* Decision Mechanism

Single-valued p-functions are derived for statements in the
algebra concerning intervals that are believed to contain
the actual value of X. If actions have been defined in
terms of intervals of X, the preferred action will be clear
if action and confidence intervals coincide. If they do
not, weighting based upon measures of interval overlap may
be feasible.
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6. Approach 6: Possibility

a. Background Elements

The background in this approach consists of three elements: (1) an

algebra of statements, (2) degree-of-membership functions defined over this

algebra, and (3) a set of fuzzy decision functions defined over the same

algebra. The algebra defines the domain of discourse, the membership -

function assigns degrees of membership to elements of the domain, and the

decision functions provide a means of reaching decisions in the domain.

The degree-of-membershi,, function is defined in terms of a fuzzy

set. Such a set is made up of ordered pairs that assign a degree of

membership in the fuzzy set to each value of a given characteristic. There

is one specific characteristic associated with each set. The fuzzy set is

then denoted by

A ixi=pil,

where x. is the i th value of the characteristic and pi is the degree of

membership of x. in the fuzzy set.
1

In Zadeh's fuzzy logic, p-values obey the following axioms (G1, Z2):

0 < p(x) < 1

p(-X) = 1 - p(x)

p(x/\ y) = min[p(x),p(y)]

p(x v y) = maxtp(x),p(y)]

p(x -> y)= min 11,[1-p(x)+p(y)]}

p(x = y) = mi {[1-p(x)+p(y)],[1+p(x)-p(y)]..

The last four axioms constitute strong truth functionality (GI, p.55).

The background also contains definitions of fuzzy predicates

appropriate to the domain of discourse. These are statements that

establish the degree of membership in a fuzzy set as a function of some

11-42

A



characteristic of an object. For example, the following statements define

the fuzzy predicate for low reflectance (LR) based on values of the

reflectance:

S1 - "A reflectance of 0.0 is low with degree 1.0."

S2 - "A reflectance of 1.0 is low with degree 0.8."

S3 - "A reflectance of 2.0 is low with degree 0.4."

S4 - "A reflectance of 3.0 is low with degree 0.2."

S5 - "A reflectance of 4.0 is low with degree 0.1."

The fuzzy set would then be represented by

LR 1011.0,110.8, 210.4, 310.2, 410.11.

b. Observation Reports

Observation reports in the possibility approach provide the raw
material for assignment of degrees of membership . That is, they are

statements that establish the degree-of-membership value of a

characteristic of an object. Application of the membership function then

determines the degree of membership of that object in the fuzzy set.

For example, suppose that statements S1 through S5 above define the

low-reflectance fuzzy set. The following report would establish the degree

of membership of Z in the class of low-reflectance objects as 0.8:

S6 - "The reflectance of object Z is 1.0."

Note that the algebra is here construed as operating on the LR predicate,

not on the reflectance values. The number of fuzzy predicates is an

important determinant of the size of the algebra of statements.

C. Updating Mechanism

The possibility approach combines evidence in the following fashion.

Suppose we desire to classify a certain object into one of n classes,
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c1 ...cn. Based upon evidence El, we develop membership functions Pl1

through pin to form the fuzzy set

A1 c= P11' C2jP1 2 '...I CnIPln •

Similarly, for evidence E2 ,

A2  IciIp 21' c21p22'"" CnIP 2nI o

We combine k sets of evidence to obtain

S.B(k) cI 1 p(k) I , c2 lp(k)2,..., cn Jp(k)n  ,

where the p(k)1,..., p(k)n are integrated membership functions for each of

the n classes. These are obtained from

p(k)j = Dxxx(Plj , P2j ... I, p ) (6.1),

where Dxxx is one of several alternative fuzzy decision functions:

D Dnt (pl13 p kj) = MIN(P, 1 ... Pk) , (6.2),

k
Dpro(11* .. 'P = Pij (6.3),

t i=I

k k -

Dcon 'j'' Pkj ) = aj ( ai. = 1) (6.4).

?.i=1 i=1

Use of Dint suggests that E1 and E interact in a a more or less independ-

ent fashion, and that the presence of a smaller p-value should be pre-
served. Use of suggests tand E interact like identical,

sered.UseofDpro sugssthat E

independent trials, so that repetitive observations cause marked changes in

11-44

. .".- °

['~.'- . . ." " ''.-.' ' . -" "..... . . ..-.. . . °." ". '2 :'.< " -'-"



relative values of membership. Use of D suggests that E and E inter-

act in a reinforcing fashion, so that membership is intermediate between

the two input values.

d. Decision Mechanism

The decision mechanism in the possibility approach is based upon the

concepts of the fuzzy goal and the fuzzy constraint. The essential idea is

that decisions are determined by the confluence of goals and constraints,

and that all three are expressible as fuzzy sets (B4).

For example, suppose that the domain of discourse has been constructed

to allow expression of goals and constraints in the same algebra of

statements, IS11..., Snf. Then the expression of goals would be embodied in

the fuzzy set

G IS Sm, .... nfll~g* (6.5).

The constraints would be embodied in a similar fuzzy set

C=iS mlc, S2 Im2c,..., Sn mnc1 (6.6).

The confluence of goals and constraints is expressed by the fuzzy set

DEC(G,C) = ISl mlgc , S2Im2gc .... Sn mngc } (6.7),

where the mlgc,..., m are integrated membership functions for the goals
lgc'**' ngc

and constraints. These are obtained from

M. =D (in. m. )(6.8),jgc xxx jg jc

where Dxxx is one of the fuzzy decision functions discussed above.

The alternative decision functions now have only two arguments, but

function as follows:
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0 D nt makes a component of the decision space reflect only the
lesser of the goal or constraint values

* D makes a component of the decision space reflect the product
othe goal and constraint values

D makes a component of the decision space reflect the weighted
con

average of the goal and constraint values.

General criteria for the choice among these decision rules have not been

developed.

Once the confluence set, DEC(G,C), has been constructed, the question

remains as to which decision is indicated. Several procedures are followed

in the literature (B4, M2). The most notable are: (1) choice of the

action having the greatest DEC degree of membership, (2) choice of an

action that is a combination of all actions weighted according to their DEC

degrees of membership, and (3) choice of an action that is an equal mixture

of the two actions having the minimum and maximum DEC degrees of

membership. General criteria for the choice among these approaches have

not been developed.

we conclude this section with a brief summary of the possibility

approach (Table 1!-6).
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TABLE 11-6
SUMMARY OF POSSIBILITY APPROACH

* Background Elements

-- Algebra of statements

-- Fuzzy predicates defining degrees of membership on subsets
of the algebra.

* Observation Reports -'

Reports establish the value of a characteristic of an
object.

Application of the membership function then determines the
degree of membership of that object in the appropriate fuzzy
predicate set.

* Updating Mechanism

-- Membership functions are combined via one of three
alternative decision functions:

Dint(Plj,. Pkj) =MIN(plj,... Pkj)

k
(p ~ Tkj TT

pro(Plj'""' Pk = iji= 1 .-

k k
Dcon(Plj''**' Pkj ) = ijPi ( = )

* Decision Mechanism

Decisions determined by the confluence of goals and
constraints expressed as fuzzy sets

The confluence is also a fuzzy set obtained from the goal
and constraint sets via application of the fuzzy decision - .
functions

The decision is ordinarily indicated by the maximum value of
the confluence set, but other indicators are sometimes used.
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D. COMPARATIVE ANALYSIS OF THE APPROACHES

1. General

From the discussion in Section C, we can identify several important

similarities and differences:

0 The structure, but not necessarily the content, of the algebra of
statements is similar across the approaches.

0 All approaches, with the possible exception of the Neyman-Pearson
and Possibility approaches, depend on formulation of a loss
function to arrive at decisions.

* Structures given to belief states are significantly different.
They may be points, intervals, convex sets, or fuzzy sets.

* Components of the updating mechanism differ significantly, but
the approaches fall into three major categories: those that use
Bayes' Theorem exclusively (classical and convex Bayes), those
that allow its use under certain conditions (Kyburg) or use a

derivative form (Dempster-Shafer), and those that do not use it
at all (Neyman-Pearson and Possibility).

* The approaches differ in their treatment of confirmational
conditionalization, direct inference, and committment to
numerically precise priors (L2, p.3 6 9 ). These are discussed
below.

* Components of the decision mechanism also differ. Extension of
the expected-loss technique from the case of point-valued belief

r. states to the cases of interval-valued or convex-set belief
states may be possible, but precisely how this is to be done
remains an open question. The fuzzy decision rules operating on
the confluence of fuzzy goals and constraints appear to be
unique.

We elaborate on several of these points below.

The belief states are characterized in the classical Bayes and Neyman-

Pearson approaches as single points on the interval [0,1]. In the Kyburg,

Neyman-Pearson, and Dempster-Shafer approaches they are construed as sub-

intervals of [0,1]. In the convex Bayes approach they are construed as

convex sets of functions in a space of (n-1) dimensions, where n is the

number of base elements in the domain of discourse.

The fuzzy-set approach is purportedly different in that it is

concerned with grades of membership rather than degrees of belief.

However, since it also computes numbers that are essentially p-values, the
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distinction between grades of membership and degrees of belief is less

important than it might seem at first glance. The real distinction lies in

the manner in which p-values are combined. It appears that p-values can be

either single points or sub-intervals of [0,11.

The approaches differ in the exercise of both direct and inverse

inference. Direct inference refers to the manner in which knowledge of

chances (or frequencies, or objective probabilities) influences belief .

states about the outcomes of trials involving chance setups. There is a

group of direct-inference principles endorsed by various authors (L2,

pp.54, 250f), but they will not be discussed here. Inverse inference

refers to the manner in which knowledge of the outcomes of trials involving

chance setups influences belief states about chances (or frequencies, or

objective probabilities). These are belief states concerning rival

statistical hypotheses (L2).
U

The key point is that rules governing direct inference are not

identical to rules governing inverse inference. The exposition,

clarification, and comparison of these rules is beyond the scope of the

current effort, but we may note that the convex Bayes approach differs from

the Kyburg approach. The former allows direct inference from beliefs, C C
frequencies, or knowledge of chances, while the latter prefers direct CC

inference only from knowledge of relative frequencies (L2, po393). - .

The approaches also differ in terms of confirmational

conditionalization. This refers to the manner in which belief states

change when there is a transition from an old to a new body of knowledge.

. In its simplest form, confirmational conditionalization requires that the

same rule that generated the belief state based on the old body of

knowledge be used in the same way to generate the belief state based on the

new body of knowledAe. The convex Bayes approach embraces confirmational

conditionalization, while the Kyburg approach does not. The Dempster-

Shafer approach apparently relies on its own form of confirmational

condi tionalization, called D-condi tionalization.
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2. Points of Correspondence

The most salient point of correspondence is the dependence, in each

approach, upon an algebra of statements that sharply defines the domain of

discourse. This algebra is a fixed framework within which all observations

are interpreted, all updating occurs, and all decisions are made. None of

the approaches discussed here addresses the issue of a dynamic algebra that

adapts to changing real-world conditions.

A second point of correspondence is dependence upon definition of a

loss function. This is explicit in all but the Neyman-Pearson and

Possibility approaches, and may even be implicit in these. Certainly the

construction of appropriate loss functions is not a trivial matter, nor is

there an iron-clad general theory of utility functions available to guide

us. A third point of correspondence has recently been elucidated by

Kyburg. He has shown (K4) that the probability intervals resulting from

application of the Dempster-Shafer updating mechanism are included in the

intervals resulting from Bayesian updating on the same evidence. He has

also shown that closed convex sets of classical probability functions

provide a representation of belief states that includes the mass-function

representation as a special case.

3. Points of Incommensurability

A key point of incommensurability is concerned with whether Bayes'

Theorem can be used to calculate precise posterior p-values concerning the

outcomes of trials from prior p-values concerning such outcomes. The

Kyburg view is that this is acceptable only when precise or imprecise

priors based upon knowledge of frequencies are available via direct

inference. On this view, there are circumstances in which no legitimate

priors other than the entire interval (0, 1] are available; consequently,

there are circumstances in which Bayes' Theorem cannot be applied.

A second point of incommensurability is related to the structure of

belief states. In a certain sense, higher-order representations can

subsume lower-order ones. For example, convex sets may subsume intervals

and points. The reverse is not true, however. This suggests that lower-
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*" order representations may be sacrificing robustness in favor of

computational simplicity.

E. SUMMARY

I-. The evidential-reasoning research reported in Chapter II can be

summarized as follows:

' The evidential-reasoning problem can be formulated in terms of a
four-part paradigm. The component parts are the background
elements, the observation reports, the updating mechanism, and
the decision mechanism.

* Each of the six major approaches can be expressed in terms of the
four-part paradigm.

* Major similarities in the ER approaches are found in two
background elements:

-- structure of the algebra of statements (but not necessarily
the content)

-- the loss function.

* Major differences in the ER approaches are found in several
components:

structures given to belief states (points, intervals, convex
sets, fuzzy sets)

-- updating algorithms (Bayes' Theorem, Dempster's Rule,
principles of direct inference, confidence intervals, fuzzy
combination)

-- decision algorithms (expected loss on point-valued p-
functions, expected loss on intervals or convex sets, fuzzy
decision rules).

1 .
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III: APPLICATION TO EXPERT-SYSTEM TASKS IN THE DCMAIN OF
IMAGE ANALYSIS

A. INTRODUCTION

In Chapter II we formulated the relevant ER approaches in a parallel

fashion and arrived at a set of points of correspondence and points of in-

commensurability. In Chapter III we apply the ER approaches to several

important tasks for expert systems in the domain of image analysis.

We shall limit ourselves here to discussion of image analysis or low-

level vision. The current effort also has application to scene analysis or

high-level vision, but exploration of these applications lies beyond the

scope of this effort. We shall consider the domain of image analysis to

include the identification of lines, edges, regions, and texture through

the level of the primal sketch (M2). We shall consider scene analysis to

be the recognition of objects and configurations of objects based upon the

results of image analysis.

Image analysis here will be considered to be comprised of three inter-

related processes: feature extraction, segmentation, and domain classifi-

cation. Feature extraction is the retrieval of relevant information from

the original image data. Segmentation is the division of the image into

several relevant domains. Domain classification is the assignment of each

domain to one of several categories.

There are three expert-system tasks to be addressed here: diagnosis,

integration, and control. The nature and importance of each will be des-

cribed in terms of image-analysis objectives in the next section.
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B. EXPERT-SYSTEM TASKS IN IMAGE ANALYSIS

There is growing evidence that the application of expert-system tech-

niques to image-analysis problems may be of significant utility (for exam-

ples, see references BI, G3, K2, M1, M2, N2, and Wi). various algorithms

for attacking various components of this problem have incorporated specia-

lized heuristics to improve performance. The promise of additional

improvement via expert systems lies in applying several classes of such

heuristics in an integrated and adaptive manner to a single image.

While exploring the nature of the three major expert-system tasks in

terms of image-analysis problems, this discussion is not intended to be ex-

haustive in terms of either expert-system or image-analysis techniques.

Its intent is to serve as a vehicle for comparison the the evidential-

reasoning approaches described in Chapter II.

1 1. Diagnosis

Diagnosis is the inference of system behaviour from various data.

That is, based upon data about system processes, a description of the sys-

tem state is constructed. Figure III-1 is a schematic representation of

such a diagnostic task.

In terms of the component parts of the imaqe-analysis process, diag-

nosis might include the following sorts of tasks:

* Assessment of the degree to which the image has been appropri-
ately segmented

* Assessment of the degree to which domains have been appropriately
classified

a identification of those feature-extraction, segmentation, or
domain-classification components of the image-analysis system
that are not performing adequately in a certain context.

Detailed discussion of each of these tasks is beyond the scope of this

effort, but we will construct an example for use in the rdmainder of the

chapter. We will focus on the reqion-growing (RG) portion of segmentation.
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Sample Task I: Diagnosis

Objective: Diagnose the behavior of the RG component in the
segmentation portion of the IAS.

Assumptions: RG operates on features of intensity and intensity
gradient.

Inputs: Measures of the uniformity of each current region
Measures of strengths of current boundaries

Outputs: Statements concerning RG behavior, e.g.,
SI - "The RG is merging too many pixels."
S2 - "The RG is merging approximately the right

number of pixels."
S3 - "The RG is merging too few pixels."

Approach: (1) Assemble uniformity and boundary strength
measures.

(2) Infer support for hypotheses corresponding to
statements about RG behaviour.

(3) Select a statement for output.

Addi':ional inputs could be used in the diagnostic process if RG were to

operate on features such as color hue, color saturation, or region size.

Our current intent in use of the sample task is well served by limiting it

to the simple inputs described.

2. Integration

Integration may be interpreted as the meaningful combination of a

number of disparate inputs into a smaller number of outputs. For example,

given assignments of a characteristic to some object obtained via distinct

methods, combine the assignments to form one integrated assignment. Figure

111-2 is a schematic representation of such an integrative task.

In terms of the image-analysis process, integration includes the fol-

lowing sorts of tasks:

* Combining two or more classification maps into a single map

* Combining two or more feature vectors into a single vector prior
to classification.

1
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Detailed discussion of these tasks is again beyond our current scope. The

example we will use in the remainder of the chapter will be concerned with

U the integration of the results of two different pixel-classification maps.

Sample Task II: Integration

* Objective: Combine two pixel-classification maps into a single
map.

Assumptions: Each map is classified into the same six classes,
(C1 '...,C 6)

Classification strengths have one of four values,
(S, •..S 4 )

Inputs: Two 1024 x 1024 classification maps in which each
pixel has been assigned to one of six classes.
Each assignment carries a strength.

L
Outputs: One 1024 x 1024 classification map in which each

pixel has been assigned to one of six classes.
Each assignment carries a strength.

Approach: (1) Assemble classification maps.
(2) Combine the following functions:

M1 (x,y) = (Ci,S )

M (x,Y) = (Ci,S.)
2

into a third function of the same form, M1 2.

(3) Present M12 as the integrated result.

* As before, this task is purposely kept simple for clarity of analysis.

- 3. Control

Control may be interpreted as the choice of actions that influence

. system behavior. That is, based upon a description of system state, a

decision process is followed that results in recommended actions designed

to bring system behavior closer tb some goal state. Figure 111-3 is a

schematic representation of control tasks.

111-6
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In the image-analysis process, control includes the following sorts of

tasks:

, Determination of the appropriate features to be extracted based
upon the nature of the image data, the performance of components
of the image-analysis system, and other relevant factors.

& Choice of methods of component reduction (ETL-0343, p.7).

" Choice of raster-processing techniques (ETL-0347, p.7).

* • Choice of interest operators (ETL-0347, p.20).

. Choice of weights and compatibility values for relaxation-
labeling techniques (ETL-0280, p.9).

* Removal of artifacts at class boundaries (ETL-0300, p.19).

* Coordination of cooperative algorithms (ETL-0305, p.5).
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" Choice of rules for coordination of concurrent algorithms (ETL-
0298, p.20).

U Of course, detailed discussion of these tasks is beyond our current

scope. we will construct an example for use in the remainder of the

chapter that is concerned with the coordination of two algorithms, one

dealing with lines and the other with regions.

Sample Task III: Control

Objective: Coordinate the application of two cooperative
image-analysis algorithms, line removal (LR)
and region splitting (RS)

Assumptions: LR and RS interact only via two rules:

RI - IF region y is not small

& region y is bisected by line x
& line x is not short
& the average gradient of line x is high

THEN split region y along line x.
R2 - IF line x is incomplete

& the average gradient of line x is low
& region y lies on both sides of line x,

THEN remove line x.

The location of the system in state-space is
imprecisely known due to local, rather than

Pglobal, measurements on regions and lines.

Inputs: Measures on region y - size.
Measures on line x - completeness, length, average

gradient.
Measures between region y and line x - bisection.

Outputs: Recommended actions:
Al - Apply Ri to region y.
A2 - Do not apply RI to region y.
A3 - Apply R2 to line x.
A4 - DO not apply R2 to line x.

Approach: (1) Assemble measures.
(2) Infer support for antecedents of Ri and R2.
(3) Select recommended action.

*............
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it should be noted that we have constructed rules RI and R2 so that the

antecedents cannot be simultaneously satisfied for both rules. This sim-

plifies the control task in that no rules to choose between Ri and R2 are

required. Rules about the use of other rules are often termed meta-

rules. Meta-rules can be constructed in much the same format as Ri and R2;

the application of the evidential-reasoning approaches would proceed in

essentially the same fashion for such rules.

C. APPLICATION OF EVIDENTIAL-REASONING APPROACHES

Having identified three major categories of expert-system tasks and

constructed samples of such tasks, we are ready to explore the application

of the evidential-reasoning approaches to these sample tasks. In this

section, we outline application of each approach in turn, taking care to

preserve parallel, step-wise treatments. We postpone discussion until

Section D, where we compare the results. These outlines are designed to be

precursors of the pseudo-code required to perform computational experiments

in subsequent work. It is clear, however, that they are here presented in

much simplified form in order to cover the great breadth of the current

effort (6 approaches and 3 tasks).

1. Approach 1: Classical Bayes

a. Sample Task I - Diagnosis

" - Application of the classical Bayes approach would proceed as follows:

(1) Determine elements of the algebra of statements:

values of intensity for each relevant pixel

- values of intensity gradient for each relevant pixel

- set of current regions

- measure of uniformity for each current region

- measures of boundary strengths.

(2) Determine conditional p-values (point-valued).

(3) Determine a priori p-values (point-valued).

(4) Identify those statements having unitary p-values on the

basis of the input data.
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(5) Apply equations (1.1) and (1.2) to obtain a

posteriori and current p-values.

(6) Determine loss matrix.

(7) Calculate the expected loss using equation (1.3)

based upon the current p-values.

(8) Select the diagnosis statement having the lowest expected

loss. r.

b. Sample Task Ii - Integration

Application of the classical Bayes approach would proceed as follows:

(1) Determine elements of the algebra of statements:

- 24 states of a pixel from Map 1, (C1, S1 )

- 24 states of a pixel from Map 2, (C2, S2 )

- - 24 states of a pixel from Map 12, (C12, S 12

(2) Determine conditional p-values:
- point-valued

- values for P((C 1 ,S1 ) (C2, 2 (C1 2 ' s1 2)]

- up to 243 such values, but presumably many are zero.

(3) Determine a priori p-values.

- point-valued

- 24 values for Pprior(C 1 2 , S1 2)]

p (4) Identify those statements having unitary p-values on the

basis of the input data.

- If each pixel is considered independently, just two

statements will have unitary p-values.

(5) Apply equations (1.1) and (1.2) to obtain a

posteriori and current p-values.

- 24 values for Ppost[(C12, S12)]

(6) Determine loss matrix.

(7) Calculate the expected loss using equation (1.3)

based upon the current p-values.

(8) Select the statement for the Map-12 pixel having the lower

expected loss.

i
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c. Sample Task III- Control

Application of the classical Bayes approach would proceed as

follows:

(1) Determine elements of the algebra of statements.

- Relative to the observation space:

-- r states of size measure on region y

-- s states of completeness measure on line x

-- t states of length measure on line x

-- u states of average-gradient measure on line x

-- v states of bisection measure on region y and line x

-- there are thus N states in OS, the observation space.

N is the product of r, s, t, u, and v.

- Relative to the control space:

-- 2 states for each of the five measures above

-- There are thus 32 states in CS, the control space.

(2) Determine conditional p-values:

- point-valued

- values for P[Osj I CSi]

- up to (32 x N) such values, but presumably many are zero.

(3) Determine a priori p-values.

- point-valued

- 32 values for Pprior[CSi] .

(4) Identify those statements having unitary p-values on the

basis of the input data:

- For a given region/line pair, just one statement in OS

will have a unitary p-value.

(5) Apply equations (1.1) and (1.2) to obtain a

posteriori and current p-values.

- 32 values for p otCSi] post°

(6) Determine loss matrix.

(7) Calculate the expected loss using equation (1.3)

based upon the current p-values.

(8) Select the control action having the lower expected loss.

Ill-i 1°
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2. Approach 2: Convex Bayes

a. Sample Task I - Diagnosis -r

Application of the convex Bayes approach would proceed as follows:

(1) Determine elements of the algebra of statements.

- values of intensity for each relevant pixel

- values of intensity gradient for each relevant pixel

- set of current regions

- measure of uniformity for each current region

- measures of boundary strengths.

(2) Determine conditional p-values:

- intervals or convex sets.

(3) Determine a priori p-values:

- intervals or convex sets.

(4) Identify those statements having non-null p-values on the

basis of the input data.

(5) Apply Bayes' Theorem to obtain a posteriori p-values:

- must use interval or set form of theorem, equation

• (2.1).

(6) Determine loss matrix.

(7) Select the diagnosis statement via some decision function

that uses the loss matrix and the current p-values.

b. Sample Task II - Integration
Application of the convex Bayes approach would proceed as follows:

9-{

(1) Determine elements of the algebra of statements:

- 24 states of a pixel from Map 1, (CI , SI )

- 24 states of a pixel from Map 2, (C2, S2

- 24 states of a pixel from Map 12, (C1 2, S12).

(2) Determine conditional p-values.

- intervals or convex sets

- values for P[(C 1 ,S ) (C 2,S2 (C12' $12 ) ]

- there could be up to 243 such intervals or convex

sets, but presumably many are null.

111-1 2
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(3) Determine a priori p-values:

- intervals or convex sets

- 24 intervals or sets for PpriorU(C12, S1 2 )l

(4) Identify those statements having non-null p-values on the

basis of the input data.

- if each pixel is considered independently, just two

statements will have non-null p-values.

(5) Apply Bayes' Theorem to obtain a posteriori p-values:

- 24 intervals or sets for Ppost[(C 1 2, S12 ) )

- must use interval or set form of theorem, equation

(2.1).

.(6) Determine loss matrix.

(7) Select the statement for the Map-12 pixel via some decision

function that uses the loss matrix and the current p-values.

c. Sample Task III - Control

Application of the convex Bayes approach would proceed as follows:

(1) Determine elements of the algebra of statements:

- Relative to the observation space:

-- r states of size measure on region y

s states of completeness measure on line x

-- t states of lenqth measure on line x

-- u states of average-gradient measure on line x

-- v states of bisection measure on region y and line x

-- there are thus N states in OS, the observation space.

N is the product of r, s, t, u, and v.

- Relative to the control space:

-- 2 states for each of the five measures above

-- there are thus 32 states in CS, the control space.

(2) Determine conditional p-values:

- intervals or convex sets

- values for P(OSj CSi]

- there could be up to (32 x N) such intervals or convex

b sets, but presumably many are null.

111-1 3
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(3) Determine a priori p-values:

- intervals or convex sets

- 32 intervals or sets for Pprior[CSi].

(4) Identify those statements having non-null p-values on the

basis of the input data:

- for a given region/line pair, just one statement in OS

* will have a non-null p-value.

(5) Apply Bayes' Theorem to obtain a posteriori p-values.

- 32 intervals or sets for Ppost[CSi] .

,- - must use interval or set form of

theorem, equation (2.1).

(6) Determine loss matrix.

(7) Select the control action via some decision function that

uses the loss matrix and the current p-values.

r.
3. Approach 3: Dempster - Shafer

a. Sample Task I - Diagnosis

Application of the Dempster-Shafer approach would proceed as follows:

(1) Determine elements of the algebra of statements:
Svalues of intensity for each relevant pixel

- values of intensity gradient for each relevant pixel

- set of current regions

- measure of uniformity for each current region

- measures of boundary strengths

(2) Determine mass functions for statements on the basis of

the input data.

(3) Apply Dempster's Rule using equation (3.4) if combination

of mass functions is required.

(4) Compute support and plausibility via equations

(3.1) and (3.2) for hypotheses corresponding to

the diagnosis statements.

(5) Determine loss matrix.

111-14
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(6) Select the diagnosis statement via some decision function

that uses the loss matrix, the support function, and the

Splausibility function.

b. Sample Task II - Integration

Application of the Dempster-Shafer approach would proceed as follows:

(1) Determine elements of the algebra of statements.

- 24 states of a pixel from Map 1, (C1 , S1)

* -- 24 states of a pixel from Map 2, (C2, S

- 24 states of a pixel from Map 12, (C12, S12)

(2) Determine mass functions for statements on the basis of

the input data:

- if each pixel is considered independently, just two

statements will have non-null mass-functions.

(3) Apply Dempster's Rule using equation (3.4) if combination

of mass functions is required:

- combine the two non-null mass functions.

(4) Compute support and plausibility via equations

(3.1) and (3.2) for statements corresponding to the states

of the Map-1 2 pixel.

(5) Determine loss matrix.

(6) Select the statement for the Map-12 pixel via some decision

function that uses the loss matrix, the support function,

and the plausibility function.

c. Sample Task III - Control

Application of the Dempster-Shafer approach would proceed as follows:

(1) Determine elements of the algebra of statements:

- Relative to the observation space:

-- r states of size measure on region y

-- s states of completeness measure on line x

-- t states of length measure on line x

-- u states of average-gradient measure on line x

111-1 5



-- v states of bisection measure on region y and line x

-- there are thus N states in OS, the observation space.

N is the product of r, s, t, u, and v.

- Relative to the control space:

-- 2 states for each of the five measures above

-- there are thus 32 states in CS, the control space.

(2) Determine mass functions for statements on the basis of

the input data:

- for a given region/line pair, more than one statement in

OS may have a non-null mass-function.

(3) Apply Dempster's Rule using equation (3.4) if

combination of mass functions is required:

- combine the non-null mass functions.

(4) Compute support and plausibility via equations

(3.1) and (3.2) for statements corresponding to the

control actions.

(5) Determine loss matrix.

(6) Select statement for the control action via some decision

function that uses the loss matrix, the support function,

and the plausibility function.

4. Approach 4: Kyburg

a. Sample Task I - Diagnosis

Application of the Kyburg approach would proceed as follows:

(1) Determine elements of the algebra of statements.

- values of intensity for each relevant pixel

- values of intensity gradient for each relevant pixel

- set of current regions

- measure of uniformity for each current region

- measures of boundary strengths

(2) Apply principle of direct inference.

- K-relevance

111-16
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*(3) Determine conditional p-values.

-intervals

U (4) Determine a priori p-values.

-intervals

(5) identify those statements having non-null p-values on the

basis of the input data.

*(6) Apply direct inference to obtain a posteriori p-values.

(7) Determine loss matrix.

(8) Select the diagnosis statement via some decision function

that uses the loss matrix and the a posteriori p-values.

b. Sample Task Ii - Integration

Application of the Kyburg approach would proceed as follows:

(1) Determine elements of the algebra of statements.

- 24 states of a pixel from Map 1, (C1 1 S

- 24 states of a pixel from Map 2, (C, S

-24 states of a pixel from Map 12, (C1 2, S 12~

£ (2) Apply principle of direct inference.

K-relevance

(3) Determine conditional p-values.

- intervals

- values for P[(C1 Shs (Cs2 S 2 ) (Cul2  S12

- there could be up to 243 such intervals, but

presumably many are null.

(4) Determine a priori p-values:

-intervals

- 2 inervls or PC ,S H].24 ntevas fr prior 12' 12
(5) Identify those statements havin non-null p-values on the

basis of the input data:

-if each pixel is considered independently, just two

statements will have non-null p-values.

(6) Apply direct inference to obtain a posteriori p-values:

w - 24s intervals foeratio[- 2 n a f

- must use interval form of theorem.
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(7) Determine loss matrix.

(8) Select the statement for the Map-12 pixel via some decision

5function that uses the loss matrix and the a posteriori

p-values.

I. Sample Task III- Control

Application of the Kyburg approach would proceed as follows:

(1) Determine elements of the algebra of statements:

- Relative to the observation space:

-- r states of size measure on region y

-- s states of completeness measure on line x

-- t states of length measure on line x

-- u states of average-gradient measure on line x

-- v states of bisection measure on region y and line x

-- there are thus N states in OS, the observation space.

N is the product of r, s, t, u, and v.

- Relative to the control space:

-- 2 states for each of the five measures above

-- there are thus 32 states in CS, the control space.

(2) Apply principle of direct inference:

- K-relevance.

(3) Determine conditional p-values:

- intervals

- values for P[OS, CSi]

- There could be up to (32 x N) such intervals, but

presumably many are null.

(4) Determine a priori p-values.

- intervals

- 32 intervals for Pprior[CSi ]

(5) Tdentify those statements having non-null p-values on the

basis of the input data.

- for a given region/line pair, just one statement in OS

will have a non-null p-value.
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(6) Apply direct inference to obtain a posteriori p-values.
- 32 intervals for P [CS.]

post 1

- must use interval form of theorem.

(6) Determine loss matrix.

(7) Select the control action via some decision function that

uses the loss matrix and the a posteriori p-values.

5. Approach 5: Neyman-Pearson

a. Sample Task I - Diagnosis

Application of the Neyman-Pearson approach would proceed as follows:

(1) Determine elements of the algebra of statements:

- values of intensity for each relevant pixel

- values of intensity gradient for each relevant pixel

- set of current regions

- measure of uniformity for each current region

- measures of boundary strengths

(2) Choose confidence level, L.

3(3) Construct confidence sets for the diagnosis statements:

- interval-valued

(4) Identify those observation statements having unitary

p-values on the basis of the input data.

(5) Determine the current limits on the p-values of the - I
diagnosis statements via the confidence sets pertaining to

the observation statements identified in (4).

(6) Determine loss matrix.

(7) Select the diagnosis statement via a decision function that

uses the limits generated in (5).

b. Sample Task II - Integration

Application of the Neyman-Pearson approach would proceed as follows:

III-19
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(1) Determine elements of the algebra of statements.

- 24 states of a pixel from Map 1, (C1, S

S - 24 states of a pixel from Map 2, (C2, S2 )

- 24 states of a pixel from Map 12, (C12, S1 2)

(2) Choose confidence level, L.

(3) Construct confidence sets for the Map-12 statements.

I- interval-valued.

(4) Identify those observation statements having unitary

p-values on the basis of the input data.

(5) Determine the current limits on the p-values of the

Map-12 statements via the confidence sets pertaining to

the observation statements identified in (4).

(6) Determine loss matrix.

(7) Select the Map-12 sta tement via a decision function that

uses the limits generated in (5).

c. Samole Task III- Control

Application of the Neyman-Pearson approach would proceed as follows:

(1) Determine elements of the algebra of statements:

- Relative to the observation space:

-- r states of size measure on region y

-- s states of completeness measure on line x

-- t states of length measure on line x

-- u states of average-qradient measure on line x

-- v states of bisection measure on region y and line x

.-- There are thus N states in OS, the observation space.

N is the product of r, s, t, u, and v.

- Relative to the control space:

-- 2 states for each of the five measures above

-- there are thus 32 states in CS, the control space.

(2) Choose confidence level, L.

(3) Construct confidence sets for the control-space statements.

- interval-valued
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(4) Identify those observation-space statements having unitary

p-values on the basis of the input data.

(5) Determine the current limits on the p-values of the

control-space statements via the confidence sets pertaining

to the observation-space statements identified in (4).

(6) Determine loss matrix.

(7) Select the control-space statement via a decision function

that uses the limits generated in (5).

6. Approach 6: Possibility

a. Sample Task I - Diagnosis

Application of the possibility approach would proceed as follows:

(1) Determine elements of the algebra of statements.
values of intensity for each relevant pixel

- values of intensity gradient for each relevant pixel

- set of current regions

- measure of uniformity for each current region

- measures of boundary strengths

(2) Construct membership functions.

- two-element fuzzy sets linking parameters above to each

diagnosis statement

(3) Set values in the membership functions on the basis of the

input data.

(4) Combine the membership functions via one or more of the

fuzzy decision functions, equations (6.3), (6.4), (6.5).

(5) Determine goal and constaint fuzzy sets via equations

(6.6) and (6.7).

(6) Form the confluence set, DEC(G,C) via equation (6.8).

(7) Select the diagnosis 3tatement having the highest

DEC degree of membership.
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b. Sample Task II - Integration

Application of the possibility approach would proceed as follows:

(1) Determine elements of the algebra of statements.

- 24 states of a pixel from Map 1, (Ci, Si)

- 24 states of a pixel from Map 2, (C2, S2)

- 24 states of a pixel from Map 12, (C12, S12)

(2) Construct membership functions.

- 24 two-element fuzzy sets linking Map-1 and Map-2

parameters to each Map-12 statement

(3) Set values in the membership functions on the basis of the

input data.

(4) Combine the membership functions via one or more of the

fuzzy decision functions, equations (6.3), (6.4), (6.5).

(5) Determine goal and constaint fuzzy sets via

equations (6.6) and (6.7).

(6) Form the confluence set, DEC(G,C) via equation (6.8).

(7) Select the Map-12 statement having the highest DEC degree

of membership.

c. Sample Task III - Control

Application of the possibility approach would proceed as follows:

(1) Determine elements of the algebra of statements:

- Relative to the observation space:

-- r states of size measure on region y

-- s states of completeness measure on line x

-- t states of length measure on line x

-- u states of average-gradient measure on line x

-- v states of bisection measure on region y and line x

-- There are thus N states in OS, the observation space.

N is the product of r, s, t, u, and v.

- Relative to the control space:

-- 2 states for each of the five measures above

-- There are thus 32 states in CS, the control space.
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(2) Construct membership functions:

- 32 N-element fuzzy sets linking observation-space

parameters to each control-space state

(3) Set values in the membership functions on the basis of the
input data.

(4) Combine the membership functions via one or more of the

fuzzy decision functions, equations (6.3), (6.4), (6.5).

(5) Determine goal and constaint fuzzy sets via equations (6.6)

and (6.7).

(6) Form the confluence set, DEC(G,C) via equation (6.8).

(7) Select the control action having the highest DEC degree

of membership.

LD. COMPARATIVE ANALYSIS OF THE APPLICATIONS

From the foregoing definition of sample tasks and parallel, step-wise

application of theoretical approaches, we can make the following compara-

tive observations:

0 The diagnosis and integration tasks do not lend themselves to
formulation of loss or utility functions as readily as the con-
trol task. This occurs because the former tasks, at least when
considered in isolation, do not ordinarily incorporate conse-
quences of decisions in their formulation. In a sense, they do
not make explicit the impact of Type-I and Type-II errors. This
difference in tasks may favor approaches that do not erplicity
require a loss function. However, in practical applications
where the diagnosis and integration tasks are embedded in a spe-
cific IAS, it may be the case that useful loss functions can be
constructed by reference to the role of the task in the overall
performance of the system. --

* The control task offers the broadest spectrum of possible appli-
cations in image-analysis. This comes about because the process
of control requires the broadest view of system goals, proce-
dures, and assumptions. Control can ordinarily subsume both
diagnosis and integration. It will, however, require a large
algebra of statements and will thus penalize those approaches
that extend this algebra to include the broader representations
of belief states.
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. The classical Bayes approach offers a somewhat simpler and more
familiar technique of evidential calculation. As was seen in the
sample tasks, appropriate conditional and a priori p-values must
be developed. Furthermore, their influence permeates the entire

ER process;' if they are inapproapriate, then the process may not
yield the desired result.

* The convex Bayes approach offers a more robust representation of
belief states capable of handling each of the sample tasks. The
additional computation required may be justified when addressing
complex tasks such as control, but is probably not justified when
addressing simpler tasks such as integration. In addition, the
overhead associated with sorting out the proper use of expected
loss in this context may only be palatable when the task is suf-
ficiently complex.

* The Dempster-Shafer approach offers a somewhat more robust
belief-state representation and also appears to be capable of
handling each of the sample tasks. Comments concerning justifi-
cation of the additional computational burden also apply here,
although some research seeking efficient algorithms has appeared

I' (B2). The proper translation of support and plausibility into
decisions is not yet based upon a large body of practical experi-
ence, and thus adds some difficulty to possible applications in
image analysis. In addition, the influence of the initial mass
distribution on the evolution of belief states requires detailed
investigation.

0 The Kyburg approach is the most abstract, but may offer signifi-
cant benefits when tasks involve sorting relevant from irrelevant
knowledge. The K-relevance criterion has had little exercise in
the world of practical applications, but studies such as this one
form a growing basis for such application.

A * The Neyman-Pearson approach offers a concept, the confidence
interval, that is initially appealing in terms of modeling the
confidence that human experts might have in the evidential con-
nection between various parameters. However, its foundations are
clearly limited to the treatment of statistical hypotheses invol-
ving well-defined populations. This fact advises caution in the
extension of this approach to less statistically-oriented
domains. Within domains that correspond to sampling tasks, its
application may well be justified.

. The possibility approach offers a framework within which it may
be more convenient to capture certain relevant knowledge in the

* image-analysis domain, particularly in complex control tasks.
This is based upon its ability to characterize imprecise linguis-
tic terms ("usually", "sometimes", etc.) as fuzzy sets. Initial
results are promising (M2), but require extension.

' Directions for further research based upon these observations will be sug-

gested in Chapter IV.
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E. SUMMARY

The research into application of evidential-reasoning approaches to

expert-system tasks in image analysis reported in Chapter III can be summa-

rized as follows:

. Major expert-system tasks in this domain are: (1) diagnosis, the
inference of system behavior from data on system processes, (2)

m integration, the meaningful combination of a number of disparate
inputs into a smaller number of outputs, and (3) control, the
choice of actions that influence system behavior.

" Each of the ER approaches can be applied to sample tasks from
these three categories. Several strengths and weaknesses can be
identified:

-- Interval and convex-set representations of belief states may
be useful in complex ES tasks (e.g., control), but do so at
the expense of added complexity.

- New and more general decision procedures must be developed
in order to make practical use of these robust representa-
tions.

-- .Criteria of evidential relevance are being developed, but
require practical application for assessment.

-- Imprecise linguistic terms may be characterized by fuzzy
sets, but this also requires practical application for
assessment.

Chapter IV summarizes overall results from the current effort and discusses

directions for futher research.
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IV: CURRENT RESULTS AND DIRECTIONS FOR FURTHER RESEARCH

A. CURRENT RESULTS

The evidential-reasoning research reported in Chapter II can be summa-

rized as follows:

* The evidential-reasoning problem can be formulated in terms of a
four-part paradigm. The component parts are the background ele-
ments, the observation reports, the updating mechanism, and the
decision mechanism.

17 . Each of the six major approaches can be expressed in terms of the
four-part paradigm.

* Major similarities in the ER approaches are found in two back-
ground elements:

structure of the algebra of statements (but not necessarily
the content)

-- the loss function.

. Major differences in the ER approaches are found in several com-
ponents:

- structures given to belief states (points, intervals, convex
sets, fuzzy sets)

updating algorithms (Bayes' Theorem, Dempster's Rule, prin-
ciples of direct inference, confidence intervals, fuzzy
combination)

decision algorithms (expected loss on point-valued p-
functions, expected loss on intervals or convex sets, fuzzy
decision rules).

The research into application of evidential-reasoning approaches to

expert-system tasks in image-analysis reported in Chapter III can be summa-

* rized as follows: '
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. Major expert-system tasks in this domain are: (1) diagnosis, the
inference of system behavior from data on system processes, (2)
integration, the meaningful combination of a number of disparate
inputs into a smaller number of outputs, and (3) control, the
choice of actions that influence system behavior.

0 Each of the ER approaches can be applied to sample tasks from
these three categories. Several strengths and weaknesses can be
identified:

Interval and convex-set representations of belief states may
be useful in complex ES tasks (e.g., control), but do so at

the expense of added complexity.

-- Specialized decision procedures must be developed in order
to make practical use of these robust representations.

-- Criteria of evidential relevance are being developed, but
require practical application for assessment.

Imprecise linguistic terms may be characterized by fuzzy
sets, but this also requires practical application for

LJ assessment.

In the following section we suggest additional research based upon these

results.

B. DIRECTIONS FOR FURTHER RESEARCH

The current effort has resulted in identification of several key

issues for the application of expert systems to image analysis. The focal

points of these issues are:

0 Nature of the most important IAS tasks - precise delineation of
the task objectives, scope, assumptions, inputs, outputs, and
approach is required.

"- Utility of interval or convex-set representation of belief states

" Means of representation of relevant knowledge using the rule-
oriented paradigm.

It is clear that these issues are interrelated. However, at this stage of

development of expert systems for image analysis, it appears that the most

important is the first; without such definition of real tasks, the research

issues remain too broad to attack efficiently.
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. Presented below are outlines of representative approaches to further

research and development. These are designed to embcdy the lessons learned

thus far and to extend efforts in a practical manner:

0 R&D Plan I

Objective: develop a prototype image-analysis expert system
for application to current ETL concerns.

Approach: (1) identify specific image-analysis tasks.

(2) detail inputs, outputs, goals, etc.

(3) identify and characterize available
hardware and software environments.

(4) identify relevant knowledge.

(5) structure knowledge-base using rule-
oriented, object-oriented, procedure-
oriented, and data-oriented paradigms, as
appropriate.

(6) develop inference control system that will

utilize the knowledge-base.

(7) exercise prototype on sample tasks.

(8) revise knowledge-base and inference control
system, as appropriate.

(9) test and evaluate prototype on real tasks.

Plan I assumes that further research into the choice of appropriate eviden-

tial-resoning techniques is embedded in step (6) of the approach. Plan II

concentrates on this research:

* R&D Plan II

S-- Objective: Compare several ER techniques in direct applica-
tion to one or more detailed image-analysis tasks.

S-- Approach: (1) identify specific image-analysis tasks.

(2) detail inputs, outputs, goals, etc.

(3) identify rules that govern appropriate
performance of the image-analysis tasks.

(4) choose subset of the ER approaches for
detailed numeric application.

(5) perform sample calculations using data
supplied by ETL (or in a format specified by

ETL).
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(6) compare results in terms of desired
objectives, computational burden, and
sensitivity to variations in data and

assumptions.

These two plans are representative of the research directions available,

but not exhaustive of them. Other plans might: (1) concentrate on devel-

oping rules for specific image-analysis tasks, (2) investigate the relative

utility of various types of rule-based control systems, or (3) investigate

the utility of trainable or learning expert-systems for image analysis.
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GLOSSARY

WER Evidential Reasoning

ES Excpert System

IAS image Analysis System

LR Line Removal

*LT Lindenbaum-TarSki Algebra

*PLS plausibility

PR Pattern Recognition

-RG Region Growth

RS Reqion Split

SPT Support
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